Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
2.
Viruses ; 15(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37896810

RESUMO

Influenza is a highly contagious respiratory illness that commonly causes outbreaks among human communities. Details about the exact nature of the droplets produced by human respiratory activities such as breathing, and their potential to carry and transmit influenza A and B viruses is still not fully understood. The objective of our study was to characterize and quantify influenza viral shedding in exhaled aerosols from natural patient breath, and to determine their viral infectivity among participants in a university cohort in tropical Singapore. Using the Gesundheit-II exhaled breath sampling apparatus, samples of exhaled breath of two aerosol size fractions ("coarse" > 5 µm and "fine" ≤ 5 µm) were collected and analyzed from 31 study participants, i.e., 24 with influenza A (including H1N1 and H3N2 subtypes) and 7 with influenza B (including Victoria and Yamagata lineages). Influenza viral copy number was quantified using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Infectivity of influenza virus in the fine particle fraction was determined by culturing in Madin-Darby canine kidney cells. Exhaled influenza virus RNA generation rates ranged from 9 to 1.67 × 105 and 10 to 1.24 × 104 influenza virus RNA copies per minute for the fine and coarse aerosol fractions, respectively. Compared to the coarse aerosol fractions, influenza A and B viruses were detected more frequently in the fine aerosol fractions that harbored 12-fold higher viral loads. Culturable virus was recovered from the fine aerosol fractions from 9 of the 31 subjects (29%). These findings constitute additional evidence to reiterate the important role of fine aerosols in influenza transmission and provide a baseline range of influenza virus RNA generation rates.


Assuntos
Herpesvirus Cercopitecino 1 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Animais , Cães , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Singapura , Aerossóis e Gotículas Respiratórios , RNA Viral/genética
3.
Acta Pharm Sin B ; 13(5): 2039-2055, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37250169

RESUMO

Positive-sense RNA viruses modify intracellular calcium stores, endoplasmic reticulum and Golgi apparatus (Golgi) to generate membranous replication organelles known as viral factories. Viral factories provide a conducive and substantial enclave for essential virus replication via concentrating necessary cellular factors and viral proteins in proximity. Here, we identified the vital role of a broad-spectrum antiviral, peruvoside in limiting the formation of viral factories. Mechanistically, we revealed the pleiotropic cellular effect of Src and PLC kinase signaling via cyclin-dependent kinase 1 signaling leads to Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 (GBF1) phosphorylation and Golgi vesiculation by peruvoside treatment. The ramification of GBF1 phosphorylation fosters GBF1 deprivation consequentially activating downstream antiviral signaling by dampening viral factories formation. Further investigation showed signaling of ERK1/2 pathway via cyclin-dependent kinase 1 activation leading to GBF1 phosphorylation at Threonine 1337 (T1337). We also showed 100% of protection in peruvoside-treated mouse model with a significant reduction in viral titre and without measurable cytotoxicity in serum. These findings highlight the importance of dissecting the broad-spectrum antiviral therapeutics mechanism and pave the way for consideration of peruvoside, host-directed antivirals for positive-sense RNA virus-mediated disease, in the interim where no vaccine is available.

4.
Viruses ; 15(4)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37112923

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 is associated with a lower fatality rate than its SARS and MERS counterparts. However, the rapid evolution of SARS-CoV-2 has given rise to multiple variants with varying pathogenicity and transmissibility, such as the Delta and Omicron variants. Individuals with advanced age or underlying comorbidities, including hypertension, diabetes and cardiovascular diseases, are at a higher risk of increased disease severity. Hence, this has resulted in an urgent need for the development of better therapeutic and preventive approaches. This review describes the origin and evolution of human coronaviruses, particularly SARS-CoV-2 and its variants as well as sub-variants. Risk factors that contribute to disease severity and the implications of co-infections are also considered. In addition, various antiviral strategies against COVID-19, including novel and repurposed antiviral drugs targeting viral and host proteins, as well as immunotherapeutic strategies, are discussed. We critically evaluate strategies of current and emerging vaccines against SARS-CoV-2 and their efficacy, including immune evasion by new variants and sub-variants. The impact of SARS-CoV-2 evolution on COVID-19 diagnostic testing is also examined. Collectively, global research and public health authorities, along with all sectors of society, need to better prepare against upcoming variants and future coronavirus outbreaks.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/prevenção & controle , Teste para COVID-19 , Vacinas contra COVID-19 , Pandemias/prevenção & controle , Vacinação , Antivirais/uso terapêutico
5.
Int J Infect Dis ; 131: 19-25, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36948451

RESUMO

OBJECTIVES: As the world transitions to COVID-19 endemicity, studies focusing on aerosol shedding of highly transmissible SARS-CoV-2 variants of concern (VOCs) are vital for the calibration of infection control measures against VOCs that are likely to circulate seasonally. This follow-up Gesundheit-II aerosol sampling study aims to compare the aerosol shedding patterns of Omicron VOC samples with pre-Omicron variants analyzed in our previous study. DESIGN: Coarse and fine aerosol samples from 47 patients infected with SARS-CoV-2 were collected during various respiratory activities (passive breathing, talking, and singing) and analyzed using reverse transcription-quantitative polymerase chain reaction and virus culture. RESULTS: Compared with patients infected with pre-Omicron variants, comparable SARS-CoV-2 RNA copy numbers were detectable in aerosol samples of patients infected with Omicron despite being fully vaccinated. Patients infected with Omicron also showed a slight increase in viral aerosol shedding during breathing activities and were more likely to have persistent aerosol shedding beyond 7 days after disease onset. CONCLUSION: This follow-up study reaffirms the aerosol shedding properties of Omicron and should guide continued layering of public health interventions even in highly vaccinated populations.


Assuntos
COVID-19 , Humanos , Seguimentos , RNA Viral , SARS-CoV-2
7.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36293269

RESUMO

Influenza remains one of the most prevalent viruses circulating amongst humans and has resulted in several pandemics. The prevention and control of H3N2 influenza is complicated by its propensity for evolution, which leads to vaccine mismatch and reduced vaccine efficacies. This study employed the strategy of serial passaging to compare the evolution of the human seasonal influenza strain A/Singapore/G2-31.1/2014(H3N2) in MDCK-SIAT1 versus primary chick embryo fibroblast (CEF) cells. Genetic analysis of the HA, NS1, NA, and PB1 gene segments by Sanger sequencing revealed the presence of specific mutations and a repertoire of viral quasispecies following serial passaging. Most quasispecies were also found in PB1, which exhibited consistently high transversion-to-transition ratios in all five MDCK-SIAT1 passages. Most notably, passage 5 virus harbored the D457G substitution in the HA2 subunit, while passage 3 virus acquired K53Q and Q69H mutations in PB1-F2. An A971 variant leading to a non-synonymous R316Q substitution in PB1 was also identified in MDCK-SIAT1 passages 2 and 4. With an increasing number of passages, the proportion of D457G mutations progressively increased and was associated with larger virus plaque sizes. However, microneutralization assays revealed no significant differences in the neutralizing antibody profiles of human-influenza-immune serum samples against pre-passaged virus and passage 5 virus. In contrast, viable virus was only detected in passage 1 of CEF cells, which gave rise to multiple viral RNA quasispecies. Our findings highlight that serial passaging is able to drive differential adaptation of H3N2 influenza in different host species and may alter viral virulence. More studies are warranted to elucidate the complex relationships between H3N2 virus evolution, viral virulence changes, and low vaccine efficacy.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Embrião de Galinha , Animais , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A/genética , RNA Viral/genética , Estações do Ano , Vacinas contra Influenza/genética , Mutação , Anticorpos Neutralizantes/genética , Soros Imunes
8.
Viruses ; 14(9)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36146796

RESUMO

Coronavirus disease 2019 (COVID-19) has caused an unprecedented global crisis and continues to threaten public health. The etiological agent of this devastating pandemic outbreak is the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). COVID-19 is characterized by delayed immune responses, followed by exaggerated inflammatory responses. It is well-established that the interferon (IFN) and JAK/STAT signaling pathways constitute the first line of defense against viral and bacterial infections. To achieve viral replication, numerous viruses are able to antagonize or hijack these signaling pathways to attain productive infection, including SARS-CoV-2. Multiple studies document the roles of several non-structural proteins (NSPs) of SARS-CoV-2 that facilitate the establishment of viral replication in host cells via immune escape. In this review, we summarize and highlight the functions and characteristics of SARS-CoV-2 NSPs that confer host immune evasion. The molecular mechanisms mediating immune evasion and the related potential therapeutic strategies for controlling the COVID-19 pandemic are also discussed.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Evasão da Resposta Imune , Imunidade Inata , Interferons , Pandemias
9.
Viruses ; 14(6)2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35746815

RESUMO

Molnupiravir is a ß-d-N4-hydroxycytidine-5'-isopropyl ester (NHC) compound that exerts antiviral activity against various RNA viruses such as influenza, SARS, and Ebola viruses. Thus, the repurposing of Molnupiravir has gained significant attention for combatting infection with SARS-CoV-2, the etiological agent of COVID-19. Recently, Molnupiravir was granted authorization for the treatment of mild-to-moderate COVID-19 in adults. Findings from in vitro experiments, in vivo studies and clinical trials reveal that Molnupiravir is effective against SARS-CoV-2 by inducing viral RNA mutagenesis, thereby giving rise to mutated complementary RNA strands that generate non-functional viruses. To date, the data collectively suggest that Molnupiravir possesses promising antiviral activity as well as favorable prophylactic efficacy, attributed to its effective mutagenic property of disrupting viral replication. This review discusses the mechanisms of action of Molnupiravir and highlights its clinical utility by disabling SARS-CoV-2 replication, thereby ameliorating COVID-19 severity. Despite relatively few short-term adverse effects thus far, further detailed clinical studies and long-term pharmacovigilance are needed in view of its mutagenic effects.


Assuntos
Tratamento Farmacológico da COVID-19 , Antivirais/farmacologia , Antivirais/uso terapêutico , Citidina/análogos & derivados , Humanos , Hidroxilaminas , SARS-CoV-2
10.
Front Microbiol ; 13: 821976, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369482

RESUMO

Enterovirus 71 (EV-A71) causes hand, foot, and mouth disease (HFMD) in children and has been associated with neurological complications. With no specific treatment and a monovalent vaccine limited to the Chinese market, HFMD remains a serious public health concern and an economic burden to affected societies. The molecular mechanisms underpinning EV-A71 neurovirulence have yet to be fully elucidated. In this work, we provide experimental evidence that a single amino acid substitution (I to K) at position 149 in structural protein VP2 of a non-mouse-adapted EV-A71 strain completely and specifically abrogated its infectivity in murine motor neuron-like NSC-34 cells. We showed that VP2 I149K mutant was impaired in murine SCARB2-mediated entry step but retained the ability to attach at the cell surface. In vivo, VP2 I149K mutant was fully attenuated in a symptomatic mouse model of progressive limb paralysis. While viral titers in limb muscles were comparable to mice infected with parental wild-type strain, significantly lower viral titers were measured in the spinal cord and brain, with minimal tissue damage, therefore indicating that VP2 I149K mutant is specifically impaired in its ability to invade the central nervous system (CNS). This study highlights the key role of amino acid at position 149 in VP2 in EV-A71 neurovirulence, and lends further support that the EF loop of VP2 represents a potential therapeutic target.

11.
Clin Infect Dis ; 74(10): 1722-1728, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34358292

RESUMO

BACKGROUND: Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) superspreading events suggest that aerosols play an important role in driving the coronavirus disease 2019 (COVID-19) pandemic. To better understand how airborne SARS-CoV-2 transmission occurs, we sought to determine viral loads within coarse (>5 µm) and fine (≤5 µm) respiratory aerosols produced when breathing, talking, and singing. METHODS: Using a G-II exhaled breath collector, we measured viral RNA in coarse and fine respiratory aerosols emitted by COVID-19 patients during 30 minutes of breathing, 15 minutes of talking, and 15 minutes of singing. RESULTS: Thirteen participants (59%) emitted detectable levels of SARS-CoV-2 RNA in respiratory aerosols, including 3 asymptomatic and 1 presymptomatic patient. Viral loads ranged from 63-5821 N gene copies per expiratory activity per participant, with high person-to-person variation. Patients earlier in illness were more likely to emit detectable RNA. Two participants, sampled on day 3 of illness, accounted for 52% of total viral load. Overall, 94% of SARS-CoV-2 RNA copies were emitted by talking and singing. Interestingly, 7 participants emitted more virus from talking than singing. Overall, fine aerosols constituted 85% of the viral load detected in our study. Virus cultures were negative. CONCLUSIONS: Fine aerosols produced by talking and singing contain more SARS-CoV-2 copies than coarse aerosols and may play a significant role in SARS-CoV-2 transmission. Exposure to fine aerosols, especially indoors, should be mitigated. Isolating viable SARS-CoV-2 from respiratory aerosol samples remains challenging; whether this can be more easily accomplished for emerging SARS-CoV-2 variants is an urgent enquiry necessitating larger-scale studies.


Assuntos
COVID-19 , Canto , Aerossóis , Humanos , RNA Viral/genética , Aerossóis e Gotículas Respiratórios , SARS-CoV-2 , Carga Viral
12.
Rev Med Virol ; 32(3): e2300, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34546610

RESUMO

The family of Suppressor of Cytokine Signalling (SOCS) proteins plays pivotal roles in cytokine and immune regulation. Despite their key roles, little attention has been given to the SOCS family as compared to other feedback regulators. To date, SOCS proteins have been found to be exploited by viruses such as herpes simplex virus (HSV), hepatitis B virus (HBV), hepatitis C virus (HCV), Zika virus, respiratory syncytial virus (RSV), Ebola virus, influenza A virus (IAV) and SARS-CoV, just to name a few. The hijacking and subsequent upregulation of the SOCS proteins upon viral infection, suppress the associated JAK-STAT signalling activities, thereby reducing the host antiviral response and promoting viral replication. Two SOCS protein family members, SOCS1 and SOCS3 are well-studied and their roles in the JAK-STAT signalling pathway are defined as attenuating interferon (IFN) signalling upon viral infection. The upregulation of SOCS protein by SARS-CoV during the early stages of infection implies strong similarity with SARS-CoV-2, given their closely related genomic organisation. Thus, this review aims to outline the plausibility of SOCS protein inhibitors as a potential therapeutic regimen for COVID-19 patients. We also discuss the antagonists against SOCS protein to offer an overview on the previous 'successes' of SOCS protein inhibition in various viral infections that may portray possible clues for COVID-19 disease management.


Assuntos
COVID-19 , Progressão da Doença , Proteínas Supressoras da Sinalização de Citocina , Citocinas/metabolismo , Humanos , SARS-CoV-2 , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo
14.
JAMA Otolaryngol Head Neck Surg ; 147(5): 418-425, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33599684

RESUMO

Importance: Three-dimensionally printed nasopharyngeal swabs (3DP swabs) have been used to mitigate swab shortages during the coronavirus disease 2019 (COVID-19) pandemic. Clinical validation for diagnostic accuracy and consistency, as well as patient acceptability, is crucial to evaluate the swab's performance. Objective: To determine the accuracy and acceptability of the 3DP swab for identifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Design, Setting, and Participants: A diagnostic study was conducted from May to July 2020 at 2 tertiary care centers in Singapore with different reference swabs (FLOQSwab [COPAN Diagnostics] or Dacron swab [Deltalab]) and swab processing techniques (wet or dry) to evaluate the performance of the 3DP swab compared with traditional, standard-of-care nasopharyngeal swabs used in health care institutions. The participants were patients with COVID-19 in the first 2 weeks of illness and controls with acute respiratory illness with negative test results for SARS-CoV-2. Paired nasopharyngeal swabs were obtained from the same nostril and tested for SARS-CoV-2 by reverse-transcriptase polymerase chain reaction. The sequence of swabs was randomized based on odd and even participant numbers. Main Outcomes and Measures: Primary outcome measures were overall agreement (OA), positive percentage agreement (PPA), and negative percentage agreement of the 3DP swab compared with reference swabs. Secondary outcome measures were the correlation of cycle threshold (Ct) values of both swabs. Results: The mean (SD) age of participants was 45.4 (13.1) years, and most participants were men (87 of 89 [97.8%]), in keeping with the epidemiology of the COVID-19 pandemic in Singapore. A total of 79 patients with COVID-19 and 10 controls were recruited. Among the patients with COVID-19, the overall agreement and PPA of the 3DP swab was 91.1% and 93.5%, respectively, compared with reference swabs. The PPA was 100% for patients with COVID-19 who were tested within the first week of illness. All controls tested negative. The reverse-transcriptase polymerase chain reaction Ct values for the ORF1ab and E-gene targets showed a strong correlation (intraclass correlations coefficient, 0.869-0.920) between the 3DP and reference swab on independent testing at each institution despite differences in sample processing. Discordant results for both gene targets were observed only at high Ct values. Conclusions and Relevance: In this diagnostic study of 79 patients with COVID-19 and 10 controls, the 3DP swab performed accurately and consistently across health care institutions and could help mitigate strained resources in the escalating COVID-19 pandemic.


Assuntos
Teste de Ácido Nucleico para COVID-19/instrumentação , COVID-19/diagnóstico , Nasofaringe/virologia , Impressão Tridimensional , Adulto , Desenho de Equipamento , Humanos , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2
15.
Infect Dis Ther ; 10(2): 1015-1022, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33432534

RESUMO

INTRODUCTION: The gold standard for COVID-19 diagnosis is currently a real-time reverse transcriptase polymerase chain reaction (RT-PCR) to detect SARS-CoV-2. This is most commonly performed on respiratory secretions obtained via a nasopharyngeal swab. Due to supply chain limitations and high demand worldwide because of the COVID-19 pandemic, access to commercial nasopharyngeal swabs has not been assured. 3D printing methods have been used to meet the shortfall. For longer-term considerations, 3D printing may not compare well with injection molding as a production method due to the challenging scalability and greater production costs of 3D printing. METHODS: To secure sufficient nasopharyngeal swab availability for our national healthcare system, we designed a novel injection molded nasopharyngeal swab (the IM2 swab). We performed a clinical diagnostic study comparing the IM2 swab to the Copan FLOQSwab. Forty patients with a known diagnosis of COVID-19 and 10 healthy controls were recruited. Paired nasopharyngeal swabs were obtained from the same nostril of each participant and tested for SARS-CoV-2 by RT-PCR. RESULTS: When compared to the Copan FLOQswab, results from the IM2 swab displayed excellent overall agreement and positive percent agreement of 96.0% and 94.9%, respectively. There was no significant difference in mean RT-PCR cycle threshold values for the ORF1ab (28.05 vs. 28.03, p = 0.97) and E-gene (29.72 vs. 29.37, p = 0.64) targets, respectively. We did not observe any significant adverse events and there was no significant difference in patient-reported pain. CONCLUSION: In summary, the IM2 nasopharyngeal swab is a clinically safe, highly accurate option to commercial nasopharyngeal swabs.

16.
Am J Pathol ; 191(4): 669-685, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33453177

RESUMO

Excessive neutrophil influx, their released neutrophil extracellular traps (NETs), and extracellular histones are associated with disease severity in influenza-infected patients. Neutrophil chemokine receptor CXC chemokine receptor 2 (CXCR2) is a critical target for suppressing neutrophilic inflammation. Herein, temporal dynamics of neutrophil activity and NETosis were investigated to determine the optimal timing of treatment with the CXCR2 antagonist, SCH527123 (2-hydroxy-N,N-dimethyl-3-[2-([(R)-1-(5-methyl-furan-2-yl)-propyl]amino)-3,4-dioxo-cyclobut-1-enylamino]-benzamide), and its efficacy together with antiviral agent, oseltamivir, was tested in murine and piglet influenza-pneumonia models. SCH527123 plus oseltamivir markedly improved survival of mice infected with lethal influenza, and diminished lung pathology in swine-influenza-infected piglets. Mechanistically, addition of SCH527123 in the combination treatment attenuated neutrophil influx, NETosis, in both mice and piglets. Furthermore, neutrophils isolated from influenza-infected mice showed greater susceptibility to NETotic death when stimulated with a CXCR2 ligand, IL-8. In addition, CXCR2 stimulation induced nuclear translocation of neutrophil elastase, and enhanced citrullination of histones that triggers chromatin decondensation during NET formation. Studies on temporal dynamics of neutrophils and NETs during influenza thus provide important insights into the optimal timing of CXCR2 antagonist treatment for attenuating neutrophil-mediated lung pathology. These findings reveal that pharmacologic treatment with CXCR2 antagonist together with an antiviral agent could significantly ameliorate morbidity and mortality in virulent and sublethal influenza infections.


Assuntos
Benzamidas/farmacologia , Ciclobutanos/farmacologia , Influenza Humana/mortalidade , Infecções por Orthomyxoviridae/patologia , Oseltamivir/farmacologia , Receptores de Interleucina-8B/efeitos dos fármacos , Animais , Armadilhas Extracelulares/microbiologia , Humanos , Influenza Humana/patologia , Elastase de Leucócito/efeitos dos fármacos , Pulmão/patologia , Camundongos , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/patologia , Infecções por Orthomyxoviridae/mortalidade , Suínos
17.
Front Microbiol ; 11: 581867, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101257

RESUMO

Influenza A virus (IAV) poses a major threat to global public health and is known to employ various strategies to usurp the host machinery for survival. Due to its fast-evolving nature, IAVs tend to escape the effect of available drugs and vaccines thus, prompting the development of novel antiviral strategies. High-throughput mass spectrometric screen of host-IAV interacting partners revealed host Filamin A (FLNA), an actin-binding protein involved in regulating multiple signaling pathways, as an interaction partner of IAV nucleoprotein (NP). In this study, we found that the IAV NP interrupts host FLNA-TRAF2 interaction by interacting with FLNA thus, resulting in increased levels of free, displaced TRAF2 molecules available for TRAF2-ASK1 mediated JNK pathway activation, a pathway critical to maintaining efficient viral replication. In addition, siRNA-mediated FLNA silencing was found to promote IAV replication (87% increase) while FLNA-overexpression impaired IAV replication (65% decrease). IAV NP was observed to be a crucial viral factor required to attain FLNA mRNA and protein attenuation post-IAV infection for efficient viral replication. Our results reveal FLNA to be a host factor with antiviral potential hitherto unknown to be involved in the IAV replication cycle thus, opening new possibilities of FLNA-NP interaction as a candidate anti-influenza drug development target.

18.
Front Pharmacol ; 11: 870, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581816

RESUMO

There is an urgent need for new therapeutic strategies to contain the spread of the novel coronavirus disease 2019 (COVID-19) and to curtail its most severe complications. Severely ill patients experience pathologic manifestations of acute respiratory distress syndrome (ARDS), and clinical reports demonstrate striking neutrophilia, elevated levels of multiple cytokines, and an exaggerated inflammatory response in fatal COVID-19. Mechanical respirator devices are the most widely applied therapy for ARDS in COVID-19, yet mechanical ventilation achieves strikingly poor survival. Many patients, who recover, experience impaired cognition or physical disability. In this review, we argue the need to develop therapies aimed at inhibiting neutrophil recruitment, activation, degranulation, and neutrophil extracellular trap (NET) release. Moreover, we suggest that currently available pharmacologic approaches should be tested as treatments for ARDS in COVID-19. In our view, targeting host-mediated immunopathology holds promise to alleviate progressive pathologic complications of ARDS and reduce morbidities and mortalities in severely ill patients with COVID-19.

19.
Front Immunol ; 11: 679, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391009

RESUMO

Francisella tularensis(Ft) is a highly virulent, intracellular Gram-negative bacterial pathogen. Acute Ft infection by aerosol route causes pneumonic tularemia, characterized by nodular hemorrhagic lesions, neutrophil-predominant influx, necrotic debris, fibrin deposition, and severe alveolitis. Ft suppresses activity of neutrophils by impairing their respiratory burst and phagocytic activity. However, the fate of the massive numbers of neutrophils recruited to the infection site is unclear. Here, we show that Ft infection resulted in prominent induction of neutrophil extracellular traps (NETs) within damaged lungs of mice infected with the live attenuated vaccine strain of Ft(Ft-LVS), as well as in the lungs of domestic cats and rabbits naturally infected with Ft. Further, Ft-LVS infection increased lung myeloperoxidase (MPO) activity, which mediates histone protein degradation during NETosis and anchors chromatin scaffolds in NETs. In addition, Ft infection also induced expression of peptidylarginine deiminase 4, an enzyme that causes citrullination of histones during formation of NETs. The released NETs were found largely attached to the alveolar epithelium, and disrupted the thin alveolar epithelial barrier. Furthermore, Ft infection induced a concentration-dependent release of NETs from neutrophils in vitro. Pharmacological blocking of MPO reduced Ft-induced NETs release, whereas addition of H2O2 (a substrate of MPO) significantly augmented NETs release, thus indicating a critical role of MPO in Ft-induced NETs. Although immunofluorescence and electron microscopy revealed that NETs could efficiently trap Ft bacteria, NETs failed to exert bactericidal effects. Taken together, these findings suggest that NETs exacerbate tissue damage in pulmonary Ft infection, and that targeting NETosis may offer novel therapeutic interventions in alleviating Ft-induced tissue damage.


Assuntos
Células Epiteliais Alveolares/patologia , Armadilhas Extracelulares/metabolismo , Francisella tularensis/imunologia , Pulmão/patologia , Neutrófilos/imunologia , Tularemia/imunologia , Animais , Gatos , Células Cultivadas , Peróxido de Hidrogênio/metabolismo , Camundongos , Peroxidase/metabolismo , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...